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Abstract—While gait rehabilitation robots have become in-
creasingly common to automate treadmill training, their efficacy
is still controversial. Current robots lack the ability to react
compliantly to the user’s voluntary effort and cognitive intention.
Bio-cooperative control concepts allow integrating the patient
into the control loop as part of the plant rather than seeing him as
a source of disturbance. Closed loop control is thereby performed
on a physiological and psychological level. In this paper, we
review the concept of bio-cooperative control implemented with
neurological patients during robot-assisted gait rehabilitation.
We highlight its clinical importance and review our work on
control strategies that allow bio-cooperative control. We finish
by discussing the future potential of bio-cooperative control in
rehabilitation robotics.

I. INTRODUCTION

Damages of the CNS, such as stroke or spinal cord injury,

are amongst the leading causes of disabilities, severely limit

the quality of living of affected people and their possibility to

actively contribute to society [1]. Recent studies estimate the

incidence of stroke to at least 101 - 285 in men and 47 - 198 in

women per 100.000 subjects in Europe [2], [3]. Thus, stroke

affects about 1 million people in Europe each year. Spinal Cord

Injury (SCI) is reported to affect 14-20 subjects per million in

Europe [4] and 14-40 subjects per million worldwide [5].

Robots have become increasingly common to automate re-

habilitative treadmill training, as they allow for longer training

duration and higher training intensity [6]. Two general design

approaches have been pursued: end-effector based robots such

as the gait trainer Gaittrainer [7], or the Haptic Walker [8] and

exoskeleton robots such as the Lokomat [9]–[11], the Lopes

[12], the Autoambulator (www.healthsouth.com) or the Walk

Trainer [13].

Despite their advantages, their effectiveness is still contro-

versial [14], [15]. The Lokomat, as the most studied amongst

all available gait robots, was found to be superior to manual

therapy [16], [17], equally efficient as manual therapy [18] or

inferior to manual therapy [19], [20].

Novel control strategies allow so called bio-cooperative

behavior, which is defined as the ability of the robot to react
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compliantly to the user’s voluntary effort or cognitive load

[10], [21], [22], thereby integrating the human into the control

loop instead of treating the human as a source of disturbance.

We thereby define cognitive load as the amount of focus and

concentration the patient has to invest to still be able to fulfill

the rehabilitation task.

The lack of bio-cooperativity in current gait robots might

explain why gait robots are not clearly superior to compared to

manual therapy. In the following, we will review the definition

of bio-cooperative control, exemplify possible implementa-

tions and highlight its clinical relevance for rehabilitation

outcome. The methods and results presented in this paper are

a summary of previously published material [23]–[27].

II. BIO-COOPERATIVE CONTROL

Bio-cooperative control of a gait rehabilitation robot is

possible on two key levels of integration: a physiological and

a psychological level (Fig. 1). On the physiological level, the

robot has to take the physiology of the patient into account

and needs to react adaptively to changing demands in physical

effort. On the psychological level, the robot has to interact with

the patient on a cognitive level and take the patient’s current

mental engagement or cognitive load into account [21], [22].
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Fig. 1. The Human-in-the-loop control scheme. The gait robot and the
patient exchange interaction forces, an audiovisual display allows projection
of feedback on the current gait performance or to display a virtual task. The
current physiological or psychological state is determined in real-time via
physiological recordings. The human is therefore part of a closed loop control
of physiology and psychology.
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A. Controlling physiological states

Active physical participation of the patients in rehabilitation

training and high training intensities were shown to substan-

tially improve motor learning [28] and rehabilitation outcome

[29]–[32]. In addition, coordinative gait training plays a major

role in rehabilitation of stroke survivors [33]. Finally, intense

cardiovascular exercise was shown to improve sensorimotor

functions, decrease cardiovascular risk factors and improve the

medical risk management of stroke survivors [34].

The combination of coordinative gait training with car-

diovascular training can therefore be regarded as key to

improvement of neurological rehabilitation. Particularly non-

ambulatory patients cannot exercise on treadmills, but must

use stationary bicycles, where the problems of coordination

and balance during walking do not need to be taken into

consideration. Gait robots are strong enough to move the

patient’s legs along a predefined walking trajectory and can

support learned passiveness of the patient.

In healthy subjects, treadmill based heart rate (HR) control

has been successfully demonstrated using PID or Hinf control

[35]–[37]. Pennycott et al. [38] controlled oxygen uptake

during Lokomat walking, however only in healthy subjects and

with the drawback, that the method needed an initialization

time for parameter identification, which would shorten the

duration available for actual cardiovascular training in patients.

B. Controlling psychological states

1) Clinical relevance: Active cognitive participation and

motivating training sessions were shown to be key require-

ments for the success of motor learning in general [28],

[32] and in rehabilitation [39], [40]. The learning rate of a

motor task is maximal at a task difficulty level that positively

challenges and excites subjects while not being too stressful

or boring [41].

Research in healthy subjects suggests that motor learning

decreases in the presence of a distracting cognitive task, which

presents a cognitively over-challenging situation [42], [43]. A

task which is too easy for the subject will be perceived as

boring, a task which is too difficult will overstress the subject,

while an optimally challenging task should induce maximal

motivation and cognitive participation.

Therefore, controlling cognitive load has the potential to

enhance motor learning and, thus, further increase the re-

habilitation outcome, as it is known that task with difficult

but feasible cognitive load will lead to higher motivation and

active participation [32].

2) Detecting psychological states: Detecting the psycho-

logical state is generally done via questionnaires such as the

”Intrinsic Motivation Inventory” [44] which is used to obtain

subjective information, but only at discrete time-points after

training has ceased. Questionnaires can therefore not be used

in real time. Specifically in gait rehabilitation, neurological

patients with severe cognitive deficits or aphasia might not be

able to understand and respond appropriately to the questions.

Psychophysiological measurements can provide real-time

information on the cognitive load of subjects [45], [46],

as physiological processes were shown to reflect behavioral,

cognitive, emotional and social interaction [47]. Signals from

the Central Nervous System such as the Electroencephalogram

(EEG) or Near Infrared Spectroscopy (NIRS) can be used to

infer to the psychological state of subjects; however, these

signals are difficult to record from patients during walking.

We therefore focused on signals from the autonomic nervous

system (ANS) that reflected the psychological state of a

human; the detectable states find primarily reflection in signals

that respond to mental stress or relaxation [45]; in addition,

signals from the ANS are easy to record in real-time during

robot assisted gait training.

From the ECG, HR and heart rate variability (HRV) can be

computed. When recorded during a virtual task, HR was shown

to be an indicator of physical as well as mental load [48].

Physiological effort and psychological stress have an influence

on the short-term variation of HR. In addition to psychological

processes, physical effort, such as walking on a treadmill,

can influence the psychophysiological measurements. HRV

was shown to decrease during physical effort [49], mental

stress [50] and negative emotions [51]. Galvanic skin response

(GSR) is used as a direct measure for arousal [52], [53] and

was found to increase during demanding tasks compared to

a rest period [54]. From the galvanic skin response, skin

conductance responses (SCR) measured as a number, and the

skin conductance level (SCL) are computed. The number of

SCR is a sensitive indicator for emotional strain [55]. In recent

research, SCL was found to increase during demanding tasks

compared to a rest period [54]. The breathing frequency was

found to increase during stress [56], negative emotions [57]

and mental effort [58] and also during physical activity [59].

However, not all physiological signals that provide infor-

mation on cognitive load are unambiguous. HR was found

to increase due to stress or negative emotions [45], [60], but

decreased in reaction to unpleasant stimuli [61]–[63]. Skin

temperature decreased during mental work stress in a study by

Ohsuga [64] but increased with physical activity [65]. Other

physiological recordings from the peripheral nervous system

have been used as indicators of the psychophysiological state

of a subject. Amongst these were facial EMG recordings as

indicators for emotional responses to pleasant or unpleasant

stimuli [66], [67].

3) Modulating psychological states: During robot-assisted

gait rehabilitation, control over the psychological states of

subjects is made possible via virtual environments, which

have been used to motivate and challenge patients to longer

training duration and cadence [40] and to modulate patient

participation [68]–[70]. The patient can obtain intuitive and

easy to understand information on his or her performance

during the training [71]. These virtual environments can be

therapeutically superior to real scenarios [68], [72]. Virtually

enriched environments as well as functional and task-oriented

exercise environments were shown to improve motor re-

learning and recovery after stroke [73]. Virtual reality can

be used to test different motor training strategies, different

types of feedback provided, and different practice schedules
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for comparative effectiveness in improving motor function

in patients. Virtual reality technology thereby provides a

convenient mechanism for manipulating these factors, setting

up automatic training schedules and for training, testing, and

recording participants’ motor responses.

In patients, a study by Bruetsch showed that virtual reality

had the potential to increase active participation of children

with cerebral palsy [70] compared to gait therapy alone.

Participation was thereby quantified by EMG measurements.

Mirelman showed in a randomized control study that the use of

VR increased the usage of a home-based ankle rehabilitation

system in after stroke [69]. In return, the increased exercise

time improved the functional recovery measured as gait speed

and distance walked of stroke patients significantly compared

to patients that exercised without VR.

4) Previous closed loop control on psychological states:

Previously, closed loop control of psychological states in

healthy subjects has been implemented to adjust the difficulty

level or level of assistance in virtual tasks. Haarmann et al.

[74] performed a study in 48 healthy subjects and combined

GSR with HRV measurement to control the difficulty level of

a flight simulation task. Also in an aviation task, Wilson et

al. [75] adapted the level adaptive assistance depending on a

psychophysiological estimation of a subject’s workload. Rani

et al. [76] estimated stress from HRV using a Fuzzy classifier

and controlled stress to a desired level. Liu et al. [77] used

physiological signals to adapt computer game difficulty in real-

time.

III. EXEMPLARY IMPLEMENTATIONS FOR

ROBOT-ASSISTED GAIT TRAINING

A. Controlling physiological patient states

Any control of physiological patient states must take the

biomechanical and cognitive impairments into account that

resulted from the neurological injury. In order to serve both,

the severely impaired as well as the mildly impaired patients,

a ”one fits all” system is unlikely going to be realizable.

We will first review the work on patients with mild or no

cognitive impairments that were able to understand instruc-

tions delivered via visual feedback. We will then summarize

on control approaches that also allowed control of HR in

patients with severe cognitive impairments (Fig. 2). Details on

the technological methods, study protocol and comprehensive

results can be found in [23], [27]

1) Heart rate control via visual feedback: Patients that were

cognitively capable of understanding a virtual task and pro-

ducing voluntary force were provided with real time feedback

on their current activity using visual displays [23]. HR of five

stroke patients was exemplary controlled to a desired temporal

profile (Fig. 3, gray line). With voluntary physical pushing

effort, the patient had to match the current effort to a desired

effort displayed on a screen. In this case, the control loop was

closed via a visual feedback loop, as the instructions to the

patient were given visually. The virtual stimulus was designed

to be as easy and intuitive as possible such that patients with

cognitive impairments were able to understand and perform
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Fig. 2. Implementation of heart rate control during robot assisted gait
rehabilitation. Depending on the cognitive and physical abilities of the patient,
heart rate can either be controlled via treadmill speed or via visual feedback

the task. All action in the virtual environment took place on

a straight path in the middle of the screen such that patients

with partial neglect of the visual field could use the virtual

environment. Results of an exemplary patient (71 years old,

right ischemic stroke) are shown in Fig. 3.
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Fig. 3. Exemplary plots of heart rate control in one patient. A: using visual
feedback, B: using adaptation of treadmill speed. Desired HR is plotted in
gray, recorded HR in black. Recorded HR was filtered with a 4th order
Butterworth lowpass filter, cut-off at 1 Hz.

2) Heart rate control via treadmill speed adaptation:

Subjects, whose biomechanical or cognitive impairments pre-

vented the use of virtual environments, underwent HR control

via treadmill speed adaptations during walking. In this ap-

proach, HR of five stroke patient was successfully controlled

to a desired temporal profile by controlling their gait speed

with a PI controller. Patients were forced to change walking

speed, regardless of their voluntary physical effort [23], [27].

This approach was designed for patients that were cognitively

not capable of understanding visual feedback, or physically

not capable of exerting enough voluntary physical effort to

control the virtual task. We imposed a higher physical load

on the patient by increasing gait speed such that the patient

was forced into a walking movement, which required increased

activity. Conversely, lower gait speeds demanded less physical

activity of the patient. In studies on healthy subjects [35]–[37],

HR increases of 30 beats per minute (bpm) were demonstrated;
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in our experiments, we only reached an average HR increase

of 12 bpm using treadmill speed as control signal. This seems

to be a very small increase compared to the results obtained in

healthy subjects. However, previous approaches to HR control

of healthy subjects were performed at walking speeds starting

at 3.6 km/h [35]–[37], which are not feasible for most patients.

B. Controlling psychological patient states

We first established real-time estimation of cognitive load

during robot-assisted gait training in healthy subjects [24], [26]

and stroke patients [25], [26] and then controlled cognitive

load to a desired value [25]. A virtual task (Figure 4) with

adaptable difficulty level was used to modulate cognitive load

to three distinct levels (under-challenged, challenged, over-

challenged). The task involved a biomechanical challenge (col-

lect and avoid task) and a cognitive task (answering questions)

and could be controlled by the patient by modulating the gait

effort in the Lokomat. The three levels of cognitive load were

then automatically classified by real-time processing of ECG,

breathing frequency, skin temperature, GSR, forces applied

to the robot by the user and success rate of the virtual task.

Questionnaires on cognitive load were used for comparison

with the results of the classifier. The questions in the scenario

were selected and categorized into three difficulty levels by an

expert psychologist.

Is 1+1=3 ? Question

15
Score

Object
indicator

Object to
be avoided
or collected

Walking
path

Fig. 4. Virtual environment used in control of psychological states. The
question (with adaptable difficulty level) slowly disappeared in front of the
subject. The subject has to accelerate (collect the object) to answer with ’yes’
before it disappeared, or decelerate (avoid the object) to answer with ’no’.
Object indicators were introduced to make recognition of the object easier for
patients with vision problems or mild cognitive deficits.

1) Estimating cognitive load: We trained a neural network

and a Kalman adaptive linear discriminant analysis classifier

(KALDA) [78], [79] using physiological and biomechanical

data. Results were verified by asking subjects questionnaires.

In average, the neural network was able to correctly predict the

cognitive load of healthy subjects with less than 2 % error [26].

However, it needed to be trained for each subject anew and

did not generalize to classify the data of new subjects with a

probability higher than chance. The KALDA reached 88±9 %

and 75±26 % correct prediction for healthy subjects and stroke

patients respectively [25], but operated auto-adaptivly, as long

as the initial training data allowed an initial guess of the

current cogntive load (which was the case for all recordings).

Due to the inability of reidentifiying the neural network for

each patient in a clinical setting, we desided to continue

experiments with the KALDA.

2) Controlling cognitive load: We performed closed loop

control of cognitive load in five healthy subjects and five stroke

patients [25]. Subjects started at a condition, in which the

virtual task presented an under-challenging or over-challenging

situation. Within ten adaptation steps, the KALDA modified

the task difficulty such that subjects could exercise at a task

level difficulty that was challenging, but feasible. In healthy

subjects, a 87 ± 8 % match could be achieved between

the classifiers estimated cognitive load and the questionnaire

answers of subjects. In patients, the system could only reach

53±33 % correct classification. This was expected, as stroke

patients often suffer from cognitive deficits which decrease

their self-assessment capabilities. Beside the patient, the exper-

imenter also rated the patients performance objectively by fill-

ing out the questionnaires. When comparing the experimenter

rating with the decision of the classifier, we were able to obtain

a match of 80±8 %.

IV. CONCLUSION

Bio-cooperative control during gait rehabilitation can in-

tegrate control over physiological as well as psychological

aspects of the human, who then represents the plant within

the control system.

In neurorehabilitation, active biomechanical participation

was shown to increase motor learning [32]. The positive effect

of active physical participation on rehabilitation was confirmed

by Gordon et al. [34], who connect cardiovascular training

with a positive effect on the recovery after neurological

injury. We implemented HR control into Lokomat training and

can now provide cardiovascular training to non-ambulatory

patients. Besides closed loop control of physiological patient

states, the role of motivation is known to be important in the

progress on neurological rehabilitation [80], [81]. The bio-

cooperative control structure puts the human in the loop and al-

lows to optimize cognitive load of the subject, thus, increasing

motivation. Controlling cognitive load in neurorehabilitation,

therefore, has the potential to increase motor learning and

thereby the training efficiency and therapeutic outcome of

neurological rehabilitation [28], [39].

Detection and control of physiological and psychological

states is thereby neither limited to a particular gait orthosis,

nor to rehabilitation of the lower limbs, but can equally be

extended to arm rehabilitation, as performed with the ARMin

[82], the HapticMaster [83] or the MIT Manus [84]. In the

HapticMaster, physiological signals were already shown to

reliably reflect psychological states [85].

It can be concluded that closed loop control of physiological

and psychological states has the potential to improve robot as-

sisted rehabilitation by enabling clinicians to provide patient-

centered rehabilitation therapy. In the future, bio-cooperative

control strategies have the potential to replace the classical

788



master-slave paradigm that requires the user to adapt to the

rehabitation environment.
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